ECONOMIC RESOURCES OF THE SEA FLOOR

Continental margin resources
Deep-sea floor resources (few)

PALEOCLIMATE RECORDS IN OCEAN SEDIMENTS

Economic considerations determine profitability/viability of each type:
Are extra costs of offshore production offset by profits???
In many cases, the answer is, "Not currently."

Continental margins
1) Building materials- inexpensive, but huge quantities
 Sand and gravel- aggregate for concrete; other uses
 Shells deposits- used as aggregate or to make "lime" (=CaO) for concrete
2) Phosphate deposits
 For fertilizer
 Cont shelf deposits, hydrogenous sediments- maybe exploited in the future
 These occur as calcium-phosphate muds, sands, and nodules
3) Hydrocarbons (**fossil fuels**) - huge amount of activity, large profits
 Present operations
 30% of world oil output + some **natural gas**
 Increasing, e.g., Indonesia

Origin of petroleum and natural gas:
 Accumulation of **organic matter** in sediments
 Need **high sedimentation rate**, or bacteria consume most or all of this
 Burial, heating (>100˚C), alteration of molecules to form oil
 Later **migration** of oil and gas upward into "traps"

Continental margins only
 Poor preservation of organic matter in deep sea
 Higher cost in deep water

Gas Hydrates:
 Water and natural gas combine to form a dense material
 Layers of this found in ocean sediments
 Possible HUGE energy source if it can be extracted
 Possible HUGE source of greenhouse gas if some gets released (e.g., by undersea landslide)

Deep-sea floor resources
Manganese nodules
 Good source of metals, scattered on the ocean floor
 Limitations now:
 High costs vs. on-shore mines
 Ownership of sea floor not yet worked out fully
Ocean Sediments as Recorders of Earth History

1) Types of fossils give information about temperatures, ecosystems, etc.
2) Chemical analysis tells us about temperature and chemistry of the water

There are many chemical analyses that are used. Here’s one as an example: Oxygen isotope ratio measurements….

\[^{16}\text{O} = \text{oxygen with 8 neutrons (most common)} \]
\[^{18}\text{O} = \text{oxygen with 10 neutrons} \]

- As CaCO\(_3\) is formed from dissolved ions, \(^{18}\text{O}/^{16}\text{O}\) ratio depends on temperature

The figure above gives the change in the \(^{18}\text{O}/^{16}\text{O}\) ratio in the shells found in calcareous ooze over the past 600,000 years. Higher points on the curve correspond to times of warmer climate (interglacials), whereas lower points correspond to glacial times. Notice how the earth appears to descend slowly into ice ages (with some bumps along the way). In comparison, the ends of ice ages appear to be rather abrupt. Also notice how the ice ages are almost evenly spaced. This periodicity has been used by many to infer that slight changes in the earth's orbit around the sun, which create periodic variation in the solar input to various latitudes, drive the current periodic ice ages.

Paleoclimate Research seeks to answer questions such as….

Why does the earth have ice ages?
How does the earth’s climate system work?
How will it respond to increased greenhouse gases?
Does it tend to resist change?
Does it tend to amplify the effects of changes (e.g., added greenhouse gases)?
Are there “thresholds” we should avoid?

Research such as this makes use of ocean sediments as one of our best records of climate change on earth.